## 1. Exercises from 4.3

Today we're going to practice some techniques for doing multiple integrals.
Problem 1. Folland 4.3.1(a)
-Draw a picture of the region of integration, upper half of the unit disk
-We do the $y$-integral first, then the $x$-integral

$$
\begin{aligned}
\iint_{S} x+3 y^{3} d A & =\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} x+3 y^{3} d y d x \quad \text { First use linearity to break into } 2 \text { integrals } \\
& =\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} x d y d x+\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} 3 y^{3} d y d x \quad \text { In first integral, } x \text { can be considered a constant } \\
& =\int_{-1}^{1} x \sqrt{1-x^{2}} d x+\frac{3}{4} \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x
\end{aligned}
$$

- In the first integral, we are integrating an odd function over a symmetric interval; the first integral is zero.
- In the second integral, we can integrate over $[0,1]$ instead and add a factor of two because it is an even function integrated over a symmetric interval.

$$
\begin{aligned}
\int_{-1}^{1} x \sqrt{1-x^{2}} d x+\frac{3}{4} \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x & =0+\frac{3}{2} \int_{0}^{1}\left(1-x^{2}\right)^{2} d x \\
& =\frac{3}{2} \int_{0}^{1} 1-2 x^{2}+x^{4} d x \\
& =\frac{3}{2}\left(1-\frac{2}{3}+\frac{1}{5}\right) \\
& =\frac{4}{5}
\end{aligned}
$$

Problem 2. Folland 4.3.3(a) Let $S$ be the region bounded by the curves $y=x^{3}$ and $y=4 x$ in the left half of the $x y$-plane. Write the integral $\int_{S} f(x, y) d x d y$ in two different ways.

The most important part of a problem like this one is to draw a nice picture of the domain of integration.

## Integrating over y first:

- The region is bounded from below by $y=4 x$
- Bounded from above by $y=x^{3}$
- The curves intersect at $x$-values where $x^{3}-4 x=0$, implying $x=0$, or $x= \pm 2$. This gives $x=-2$ in the left half plane.
- We can write the integral then, as:

$$
\iint_{S} f(x, y) d A=\int_{-2}^{0} \int_{4 x}^{x^{3}} f(x, y) d y d x
$$

Integrating over $x$ first:

- The region is bounded from the left by $x=y^{1 / 3}$
- Bounded from the right by $x=\frac{y}{4}$
- The curves intersect at $y$-values where $y=(-2)^{3}=-8$ and $y=0$.
- We could have alternatively written the integral as:

$$
\iint_{S} f(x, y) d A=\int_{-8}^{0} \int_{y^{1 / 3}}^{y / 4} f(x, y) d x d y
$$

Problem 3. Folland 4.3.4(c)
Given an iterated integral, what is the procedure for switching the order of integration? A good strategy is to use the limits of integration to find the region $S$ over which you're integrating, then find the proper way to do the iterated integral in the opposite order.

First task: Find the region $S$ such that

$$
\iint_{S} f(x, y) d A=\int_{1}^{2} \int_{0}^{\log x} f(x, y) d y d x
$$

- Notice we integrate over the $y$-direction first
- The curves which define the limits of $y$ are $y=\log x$ and $y=0$.
- We integrate from $x=1$ to $x=2$ between these curves.
- We can now draw the domain of integration

Task 2: Write out the iterated integral in the opposite order.

- The region is bounded on the left by the curve $x=e^{y}$
- Bounded on the right by $x=2$.
- The region is bounded in the $y$-component by $y=0$ and $y=\log 2$
- The iterated integral in the opposite order is:

$$
\iint_{S} f(x, y) d A=\int_{0}^{\log 2} \int_{e^{y}}^{2} f(x, y) d x d y
$$

Problem 4. Folland 4.3.5(b) Calculate

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \cos \left(y^{3}+1\right) d y d x
$$

We want to switch the order of the integral around. As always, first draw the domain of integration:

So the iterated integral where we integrate over $x$ first has limits $x=0$ to $x=y^{2}$, and $y=0$ to $y=1$.

$$
\begin{aligned}
\iint_{S} \cos \left(y^{3}+1\right) d A & =\int_{0}^{1} \int_{0}^{y^{2}} \cos \left(y^{3}+1\right) d x d y \quad \text { The integrand of the inside integral does not depend on } x \\
& =\int_{0}^{1} \cos \left(y^{3}+1\right)\left[\int_{0}^{y^{2}} d x\right] d y \\
& =\int_{0}^{1} y^{2} \cos \left(y^{3}+1\right) d y \quad \text { Substitute } u=y^{3} \\
& =\frac{1}{3} \int_{0}^{1} \cos (u+1) d u \quad \text { Apply fundamental theorem of calculus } \\
& =\frac{1}{3}(\sin 2-\sin 1)
\end{aligned}
$$

